

AGENDA

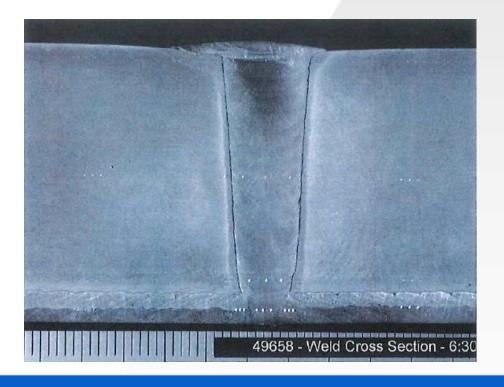
- Acknowledgements and Introduction
- > Alloy Development
- Welding Procedure Development
- Properties and Actual Performance
- Summary and Conclusions

SPECIAL METALS WELDING PRODUCTS

- ➤ INCONEL filler Metal 625
- ➤ INCONEL Filler Metal 686CPT
- > INCONEL filler Metal 725NDUR
- **➤ INCONEL Filler Metal 622**
- > INCONEL filler Metal 680

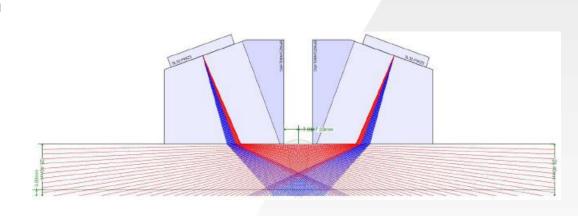
ARC SPECIALTIES ID CLAD X-70 WITH 625

Dan and Dave Hebble applied their Tri-pulse technology with **INCONEL Filler Metal 625** under controlled conditions such that the 0.2% YS of the X-70 averaged 80.75 ksi after cladding.



CRC-EVANS P-GMAW NARROW GROOVE WELD

This is a cross section of a rollout narrow groove weld made with an early FM 680 in X-65. The orbital weld that CRC-Evans made in the X-70 pipe clad by Arc Specialties appears later.



CRC-EVANS P-GMAW PAUT INSPECTION

- The phased array ultrasonic inspection is capable of finding even the smallest discontinuities
-but I am getting ahead of our discussion....

WHY WE DEVELOPED INCONEL FM 680

- Allows use of higher strength steel tubing for weight and cost reduction
- Provides 100% joint efficiency for X-70 and some X-80 tubing
- ➤ No other welding product available was able to provide the combination of properties needed to weld X-70 and X-80
- Delivers optimal combination of strength, toughness and hardness.

WHY WE DEVELOPED INCONEL FM 680

- Improved corrosion resistance for reliable service, even in sourest crudes
- Increased as-welded hardness provides improved abrasion resistance and denting resistance
- Provides 20°C higher critical crevice temperature (CCT) than 625

PROPOSED APPLICATIONS

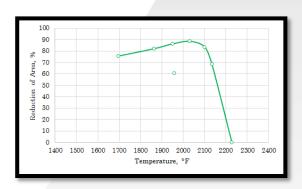
- Joining X-70 and X-80 pipe strings
- Valve and ring groove overlays (allows the use of 625 ring gasket vs 825)
- Subsea and land based ID pipe overlays
- Ball valve overlays for improved galling resistance
- Metal-to-metal seals due to improved crevice corrosion resistance

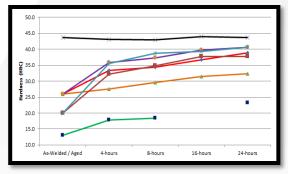
PROPOSED APPLICATIONS

- Riser connections and tie-backs
- Manifold fabrication and connections
- Frac Valve and drill collar refurbishment
- > After PWHT, provides better erosion resistance for fracking applications
- Reeling applications after CTOD-SENT improvement

INCONEL FILLER METAL 680-ALLOY DESIGN

- Ni-20.5Cr-6.5Mo-3.5Nb-6.5W-1.5Ti alloy (UNS N06680-AWS A5.14 **ERNiCrMoWNb-1)** approved
- High Yield Strength in as-welded condition
- High Impact strength at sub-zero temperatures
- Higher Corrosion Resistance than 625 weld overlay





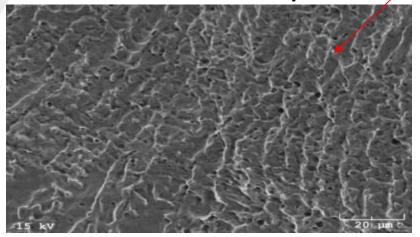
INCONEL FILLER METAL 680-ALLOY DESIGN

- Good weldability to X-65, X-70, and X-80
- High resistance to solidification cracking
- > Excellent ductility dip cracking resistance predicted by Gleeble® results
- Greater as-welded hardness than 625 and 718; provides improved denting resistance
- Hardenable by PWHT, but controllable by time and temperature

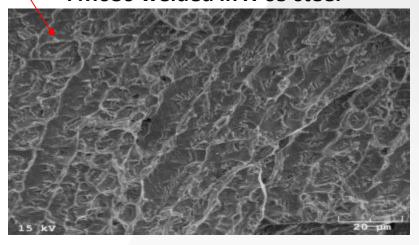
NI-CR-MO CHEMICAL COMPOSITIONS

Alloy	AWS A5.14	Ni	Cr	Fe	Mo	W	Nb	PRE
686	ERNiCrMo-14	59.5	21	0.1	16.3	4	-	51.5
622	ERNiCrMo-10	57.3	21.5	2.33	14.2	3.2		47.6
680	ERNiCrMoWNb-1	60	21.5	0.1	6.5	6.5	3.5	45.3
725	ERNiCrMo-15	57	21.5	<1	8.5		3.5	39.5
625	ERNiCrMo-3	Bal	21.5	0.61	9		3.5	40.3

PRE = %Cr + 1.5 (%Mo + %W + %Nb)



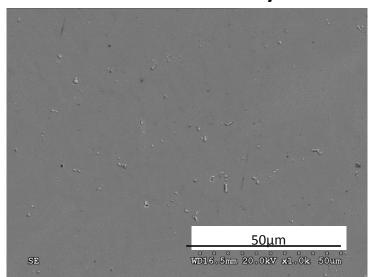
IMPACT TEST RESULTS: FRACTURE SURFACES


Precipitates

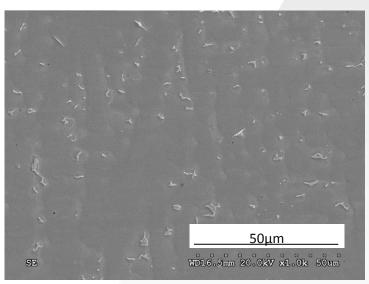
FM680 welded in alloy 600

Impact toughness = 137 ft-lbs (186 Joules). Fe content is 1.5 wt%

FM680 welded in X-65 steel


Impact toughness = 43 ft-lbs (58 Joules). Fe content is 9.4 wt%

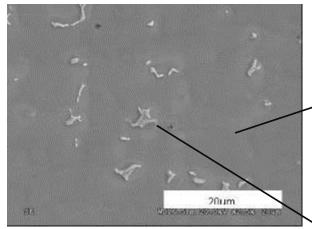
IMPACT TOUGHNESS RESULTS

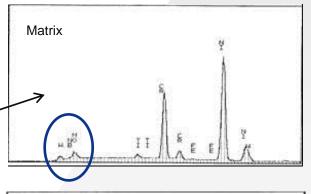


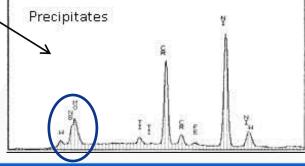
FM680 welded in alloy 600

Impact toughness = 137 ft-lbs (186 Joules). Fe content is 1.5 wt%

FM680 welded in X-65 steel

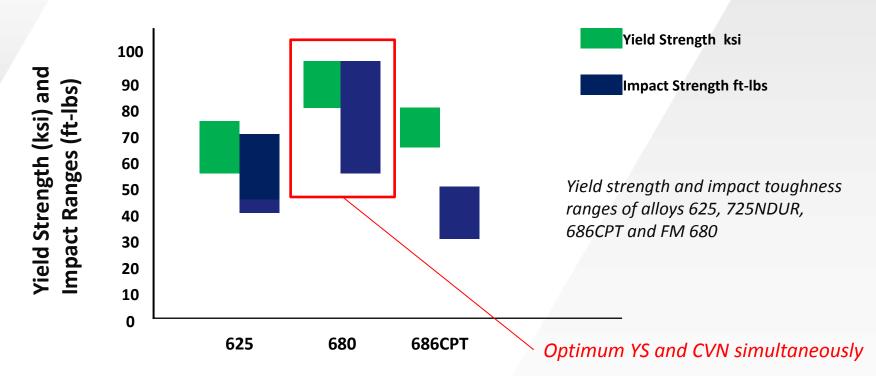

Impact toughness = 43 ft-lbs (58 Joules). Fe content is 9.4 wt%


MICROSTRUCTURE ANALYSIS RESULTS



Element s	Matrix, wt%	Second phase particle, wt%
Ti	0.7	0.8
С	1.7	1.2
W	4.6	6.9
Nb	3.7	17.2
Mo	7.3	15.7
Cr	18.5	14.5
Fe	11.9	8.13
Ni	51.6	35.5

Microstructure of weld metal of X-65 steel, welded with FM680. The second phase precipitates in the weld are rich in Mo, W, and Nb.

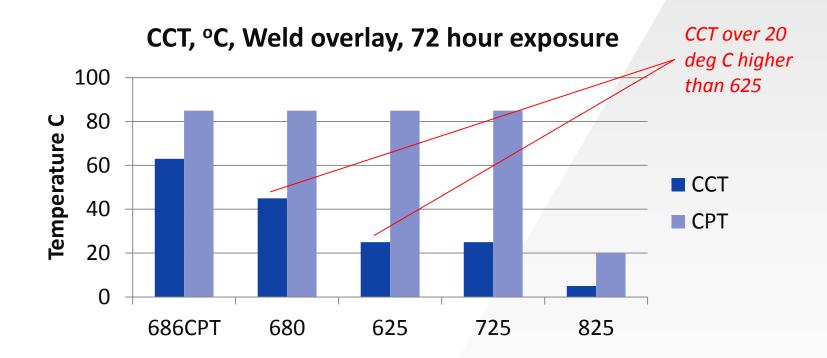


YIELD STRENGTH AND IMPACT TOUGHNESS

ASTM G48D ACTUAL TEST RESULTS

The following actual test results show how 680 performs better than 625 in CCT:

Filler	Temperature	Crevice Attack	Max Depth of Attack	Comments
Metal	°C (°F)	(Y/N)	Mils (mm)	
625	20 (68)	N	No Attack	
625	25 (77)	Y	2 (0.051)	2 areas (8%)
625	25 (77)	Y	3 (0.076)	2 areas (8%)
680	20 (68)	N	No Attack	
680	25 (77)	N	No Attack	
680	25 (77)	N	No Attack	
680	30 (86)	N	No Attack	
680	35 (95)	N	No Attack	
680	40 (104)	N	No Attack	
680	45 (113)	Y	3	3 areas (12%)


Critical Crevice Temperature (CCT) of Alloy 625 Overlay = 25°C (77°F)

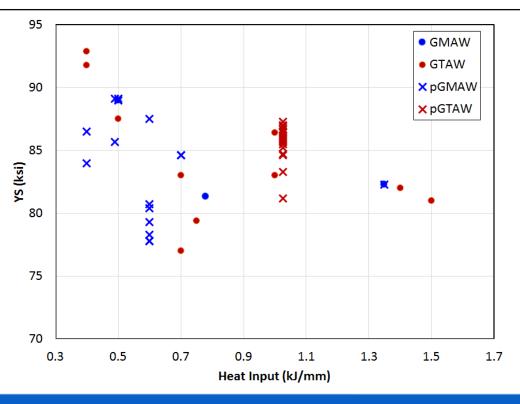
Critical Crevice Temperature (CCT) of Alloy 680 Overlay = 45°C (113°F)

CREVICE CORROSION RESISTANCE- ASTM G48D

20% IRON DILUTION COMPROMISES STRENGTH

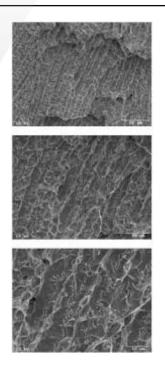
Welding details	YS, ksi	UTS, ksi	%	%	CVN Impact	Fe content,
	(MPa)	(MPa)	E1	RA	toughness, ft-	wt%
					lbs (Joules)	
GTAW AWM,	87.7 (605)	130.0 (896)	43.0		137.0 (186)	1.5%
680 in alloy 600	85.5 (589)	129.0 (890)	43.2			
	92.9 (641)	134.0 (924)	33.0			
	91.8 (633)	129.0 (890)	31.3			
GMAW-P TW,	81.1 (560)	91.8 (633)	22.4	80.8	80.2 (109)	0.56
680 in X-80 steel	80.9 (558)	91.2 (629)	23.1	80.4		
GMAW-P AWM,	85.7 (591)	118.4 (816)	35.6	41.5		0.99
680 in X-80 steel	89.1 (614)	120.1 (828)	31.0	39.1		
GTAW AWM,	70.9 (489)	114.4 (789)	28.3	32.9		20.0
680 in A36 steel	68.4 (472)	115.7 (798)	32.9	31.8		
	70.7 (488)	115.3 (795)	25.5	29.2		
	70.0 (483)	119.3 (823)	32.6	36.7		
X-70 base metal	81.2 (560)	92.1 (635)	26.9	80.1		N/A
	80.8 (557)	91.4 (630)	26.6	80.5		

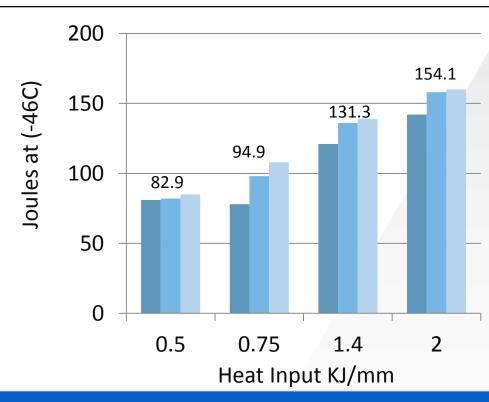
GUIDELINE WELDING PARAMETERS


Welding Process	Manual	Semi-Auto	Manual
	GMAW-P	GTAW	GTAW
Amperage, A	105-200	125-180	80-120
Voltage, V	25-31	12-15	9-10
Travel Speed, inch per minute (mm/min)	10-27	8-10	5.5-6.5
	(254-689)	(203-254)	(165-140)
Wire Speed, inch per minute (mm/min)	200-275	25-50	5-10
	(5080-6985)	(635-1270)	(127-254)
Heat Input, kJ/mm	0.30-1.46	0.44-0.63	0.35-0.45

Note: Joint Design was Single V 25° Bevel. Shielding Gas was 50/50 Argon/Helium.

YIELD STRENGTH AND HEAT INPUT TRENDS




Yield strength data are actuals observed across a wide variety of heat inputs, setups and base metals.

IMPACT STRENGTH: A FUNCTION OF HEAT INPUT

Impact Strength FM 680 welds as a Function of heat input

< 5% Fe Dilution

TENSILE PROPERTIES: X-65 PIPE JOINT

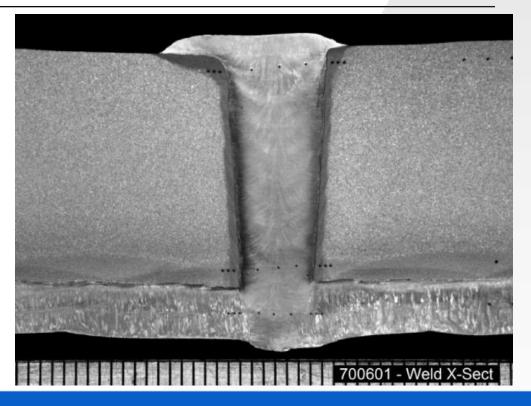
For ASME Section IX these are passing results, but for welding research, it does not tell anything about weld metal strength...

GTAW Tensile (T-3 & T2) - Utilizing X65 Pipe w/HV1654 (As-Welded) from SMWPC

ID*	Sample	Yield (Ksi)	UTS (Ksi)	% Elongation	ROA %	Failure
Phase -1 #1	T3	72.3	91.5	23.6	75.4	Base Metal
Phase -1 #2	T3	72.6	91.9	24.8	72.6	Base Metal
Phase -1 #1	T2	78.7	95.3	22.2	76.0	Base Metal
Phase -1 #2	T2	76.6	94.1	25.2	76.8	Base Metal
Phase -2 #1	T3	74.1	92.2	23.2	75.0	Base Metal
Phase -2 #2	T3	73.9	92.8	23.8	75.4	Base Metal
Phase -2 #1	T2	80.9	98.1	21.6	74.4	Base Metal
Phase -2 #2	T-2	77.6	94.8	19.85	75.1	Base Metal

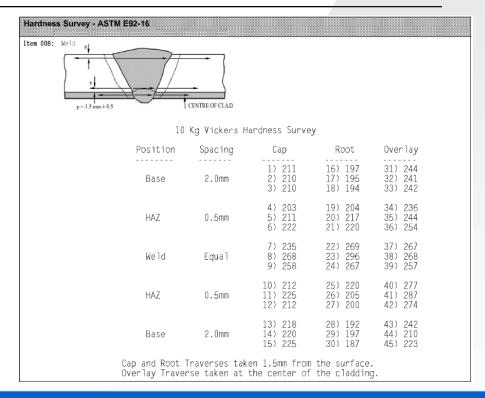
CROSS WELD TENSILE SPECIMENS

All the cross weld tensile specimens broke in the base metal


Weld

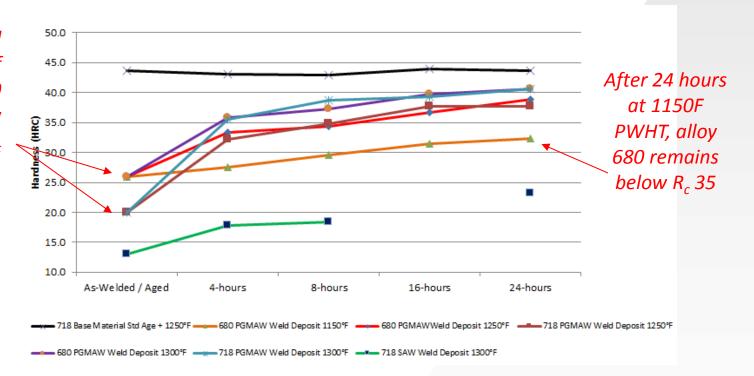
CROSS WELD TENSILE SPECIMENS

CRC Evans orbital pulsed GMAW narrowgroove weld made with FM 680. ID-cladding of X-70 made with FM625 by Arc Specialties.

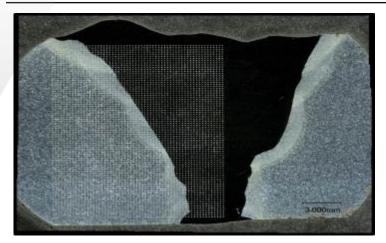


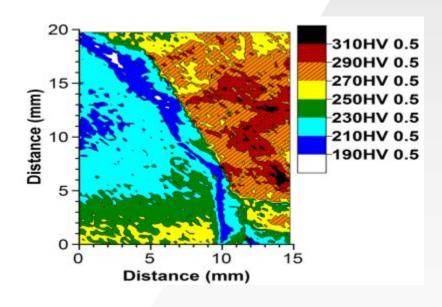
CRC-EVANS P-GMAW HARDNESS SCAN

Highest hardness in the weld scan is 296 Vickers.



PWHT OF 680 VS. 718


As-welded hardness of alloy 680 exceeds alloy 718 by 6 R_c points.


HARDNESS SURVEY, X-80 BASE METAL

Hardness Parameters:

- Vickers, 500g load
- 0.25 mm spacing
- 4800 Total indents
- Area mapped is 300 mm²
- (20 mm tall by 15 mm wide)

Hardness Survey of X-80 steel welded with FM680 using GMAW-P process. No hardness greater than R_c 35.

EARLY MECHANICAL PROPERTIES: 600, X-80

Welding details	Yield Strength, ksi (MPa)	% Elong	CVN Impact toughness, ft-lbs (Joules)	Fe content, wt%
GTAW AWM, 680 in alloy 600 MANUAL	87.7 (605) 85.5 (589) 92.9 (641) 91.8 (633)	43.0 43.2 33.0 31.3	137.0 (186)	1.5%
GMAW-P AWM , 680 in X-80 steel	85.7 (591) 89.1 (614)	35.6 31.0	-	0.99
GMAW-P TW , 680 in X-80 steel	81.1 (560) 80.9 (558)	22.4 23.1	80.2 (109)	0.56

Alloy 600 is Ni-16Cr-9.5Fe. X-80 steel is primarily Fe

EARLY MECHANICAL PROPERTIES: X-65

Welding details	Yield Strength, ksi (MPa)	% Elong	Impact toughness ft-lbs (Joules)	Fe content wt%
GTAW AWM, 680 in ID clad X-65	84.7 (593) 85.8 (592) 84.6 (593)	45.3 43.8 46.9	74.3 (101)	0.3
GTAW TW , 680 in ID clad X-65	81.5 (562) 86.7 (598) 82.7 (570) 82.2 (567)	23.2 23.3 21.1 21.5	42.8 (58)	9.4

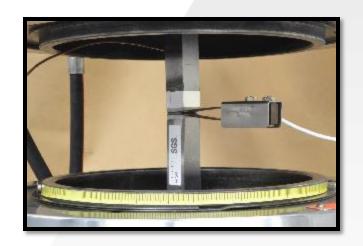
CTOD-SENB TESTING

INCONEL FM 680 provides good values for single edge notched bending (SENB) values well above acceptable values of .25-.30mm. Values measured in pulsed GTAW and pulsed GMAW welds made in X-65 were on the order of 0.8-0.9mm.

Average Crack Length [mm] a ₀ /w Fracture Mode Average Stable Crack Length [mm] Test Temperature [°C] 0.2%Proof Stress@Test Temp[N/mm²] Rate inc init. SIF [MPam ^{0.5} s ⁻¹] Knife Edge Thickness [mm] Applied Force [kN]	25.33 0.522 M N/A 0 617 1.6 0 57.61
	57.6 1
Clip Gauge Opening - Plastic [mm] Crack Tip Opening Displacement [mm]	3.46 0.982

CTOD-SENB TESTING

INCONEL FM 680 provides good values for single edge notched bending (SENB) values well above acceptable values of .25-.30mm. Values measured in pulsed GTAW and pulsed GMAW welds made in X-65 were on the order of 0.8-0.9mm.


Average Crack Length [mm] a ₀ /w Fracture Mode Average Stable Crack Length [mm] Test Temperature [°C] 0.2%Proof Stress@Test Temp[N/mm²] Rate inc init. SIF [MPam ^{0.5} s-1] Knife Edge Thickness [mm] Applied Force [kN] Clip Gauge Opening - Plastic [mm] Crack Tip Opening Displacement [mm]	25.93 0.534 M N/A 0 606 1.7 0 57.23 3.39 0.935
---	--

CTOD-SENT TESTING

- > J-R Curves produced from CTODsingle edge notched tensile specimens produced a J-R fracture toughness curve that was about 30% lower than expected.
- Metallographic investigation has been completed and a program to improve the SENT fracture toughness is in progress.

FURTHER WORK

- Complete development of improved CTOD-SENT properties
- Develop additional tensile data to complete our data base
- Perform tensile testing on higher strength base metals to measure our actual tensile and yield strengths in transverse tests
- Explore and develop the auto-aging components of as-welded **Yield Strength**
- Tell us more about what data you will need for your work

SUMMARY AND CONCLUSIONS

- **INCONEL Filler Metal 680 provides optimum combination of** high yield strength, good -50F CVN toughness simultaneously, along with better crevice corrosion resistance than 625
- Low Fe Dilution and low Heat Input produces highest strength and good toughness
- CTOD-SENB results are good and provide for the use of FM 680 to be used in "S-Lay" and "J-Lay" pipe string installation
- CTOD-SENT is in the process of being improved

