The newest of the high-performance superalloys invented by Special Metals Corporation, INCONEL® alloy 783 (UNS R30783/U.S. Patent 5,478,417), is an oxidation-resistant, low expansion, nickel-cobalt-iron alloy with aluminum, chromium, and niobium additions. The new alloy is of considerable interest to aircraft gas turbine engine designers and materials engineers for containment and clearance control components such as rings, casings, shrouds and seals for compressors, turbines and exhaust systems. The three-phase age hardenable alloy offers a range of improvements for these applications over alternative alloys in current use: A coefficient of thermal expansion approximately 20% lower than that of INCONEL alloy 718. Excellent resistance to oxidation, demonstrated in cyclic tests, at temperatures up to and beyond 1300°F (704°C). Resistance to SAGBO (stress accelerated grain boundary oxidation) comparable to that of INCONEL alloy 718, and significantly better than that of INCOLOY alloy 909. A density of 0.282 lb/in³ (7.81 g/cm³), 5% less than INCONEL alloy 718 or INCOLOY® alloy 909, contributing to an important potential improvement in strength-to-weight ratios. Manufacturing/processing characteristics comparable to those of INCONEL alloy 718, and less limiting than those of INCOLOY alloy 909. Special Metals' INCONEL alloy 783 is available as forging billet (AMS 5940), rod and bar for machining, extruded section, and wire rod. Sheet product is currently under development. Table 1 - Limiting Chemical Composition*, % | Chromium | 2.5-3.5 | |------------|-------------| | Nickel | 26.0-30.0 | | Iron | 24.0-27.0 | | Niobium | 2.5-3.5 | | Aluminum | 5.0-6.0 | | Cobalt | Remainder | | Boron | 0.003-0.012 | | Carbon | 0.03 max. | | Manganese | 0.50 max. | | Silicon | 0.50 max. | | Phosphorus | 0.015 max. | | Sulfur | | | Titanium | 0.1-0.4 | | Copper | 0.50 max | | | | ^{*}In compliance with UNS R30783 # **Physical Properties** Table 2 - Physical Constants | Density, | g/cm ³ | 7.81 | |-----------|------------------------|-----------| | | lb/in ³ | 0.282 | | Melting F | Range, °F | 2437-2565 | | | °C | 1336-1407 | | Specific | Heat, Btu/lb•°F (77°F) | 0.109 | | | J/kg•°C (25°C) | 455 | Table 3 - Coefficient of Thermal Expansion* | °F | °C | in/in/°F x 10⁴ | μm/μm/°C | | | | |------|-----|----------------|----------|--|--|--| | 200 | 93 | 5.60 | 10.08 | | | | | 300 | 149 | 5.66 | 10.19 | | | | | 400 | 204 | 5.70 | 10.26 | | | | | 500 | 260 | 5.74 | 10.33 | | | | | 600 | 316 | 5.77 | 10.39 | | | | | 700 | 371 | 5.84 | 10.51 | | | | | 800 | 427 | 6.08 | 10.94 | | | | | 900 | 482 | 6.33 | 11.39 | | | | | 1000 | 538 | 6.57 | 11.83 | | | | | 1100 | 593 | 6.85 | 12.33 | | | | | 1200 | 649 | 7.15 | 12.87 | | | | *Mean coefficient of linear expansion between 70°F and the temperature shown. Inflection point = 780°F. Figure 1- Mean coefficient of linear expansion between 25°C and the temperature shown. (Alloys annealed and aged.) Table 5- Thermal Conductivity (for annealed material) | °F | °C | Btu-in/ft²-h-°F | W/m-°C | |------|-----|-----------------|--------| | 70 | 21 | 71 | 10.1 | | 200 | 93 | 80 | 11.4 | | 400 | 204 | 91 | 13.0 | | 600 | 316 | 104 | 14.8 | | 800 | 427 | 108 | 15.4 | | 1000 | 538 | 134 | 19.1 | | 1200 | 649 | 154 | 22.0 | | 1400 | 760 | 170 | 24.2 | **Table 4-** Dynamic Modulus of Elasticity, Shear Modulus, and Poisson's Ratio | Tempe | erature | rature Young's Shear Modulus | | Poisson's
Ratio | | | |-------|---------|------------------------------|-------|---------------------|------|------| | °F | °C | 10³ ksi | GPa | 10 ³ ksi | GPa | | | 72 | 21 | 25.72 | 177.3 | 9.83 | 67.8 | 0.31 | | 200 | 93 | 25.46 | 175.5 | 9.71 | 67.0 | 0.31 | | 300 | 149 | 25.31 | 174.5 | 9.65 | 66.5 | 0.31 | | 400 | 204 | 25.12 | 173.2 | 9.58 | 66.1 | 0.31 | | 500 | 260 | 25.01 | 172.4 | 9.49 | 65.4 | 0.32 | | 600 | 316 | 24.85 | 171.3 | 9.42 | 65.0 | 0.32 | | 700 | 371 | 24.78 | 170.9 | 9.44 | 65.1 | 0.31 | | 800 | 427 | 24.57 | 172.2 | 9.42 | 65.0 | 0.30 | | 900 | 482 | 24.20 | 166.9 | 9.25 | 63.8 | 0.31 | | 1000 | 538 | 23.76 | 163.8 | 9.11 | 62.8 | 0.30 | | 1100 | 593 | 23.30 | 160.7 | 8.93 | 61.6 | 0.31 | | 1200 | 649 | 22.71 | 156.6 | 8.73 | 60.2 | 0.30 | | 1300 | 704 | 22.12 | 152.5 | 8.50 | 58.6 | 0.30 | | 1400 | 760 | 21.45 | 147.9 | 8.28 | 57.1 | 0.29 | | 1500 | 816 | 20.62 | 142.2 | 8.11 | 55.9 | 0.27 | | 1600 | 871 | 19.61 | 135.2 | 7.66 | 52.8 | 0.28 | | 1700 | 927 | 18.67 | 128.7 | 7.22 | 49.8 | 0.29 | # Mechanical Properties In the age-hardened condition, INCONEL alloy 783 has high mechanical properties at room temperature and retains much of its strength at temperatures to about 1300°F (704°C). All mechanical properties given here are for the standard heat treatment: Solution anneal at 2050°F (1121°C)/1 hr, air cool, plus "beta age" at 1550°F (845°C)/4 hr, air cool to room temperature, plus age harden at 1325°F (718°C)/8 hr, furnace cool at 100°F (55°C)/ hr to 1150°F (621°C)/8 hr, and air cool. # **Tensile Properties** Table 6- Tensile Properties | Test Ten | emperature Yield Strength | | Tensile Strength | | Elongation | Reduction of
Area | | |----------|---------------------------|-------|------------------|-------|------------|----------------------|----| | °F | ℃ | ksi | MPa | ksi | MPa | % | % | | 70 | 21 | 113.0 | 779 | 171.0 | 1194 | 24 | 44 | | 800 | 427 | 104.0 | 717 | 156.0 | 1076 | 25 | 42 | | 1000 | 538 | 99.5 | 686 | 150.0 | 1034 | 25 | 46 | | 1200 | 649 | 99.0 | 683 | 142.0 | 979 | 28 | 39 | | 1300 | 704 | 88.0 | 607 | 117.0 | 807 | 39 | 64 | # Stress Rupture Figure 2 - Stress rupture properties of INCONEL alloy 783 # Static Crack Growth Behavior In Air, 538°C $\label{eq:Figure 3 - 1000°F (538°C) crack growth curves comparing behavior of INCONEL alloys 783, 718, and INCOLOY alloy 909 in air [2].}$ ## **Extended Exposure at Elevated Temperatures** High temperature tensile properties of INCONEL alloys 783, 718, and INCOLOY alloy 909 tested at 1200°F (649°C) following isothermal exposure at 1100°F (593°C) are shown in Figure 4. Under these test conditions the yield strength of alloys 783 and 718 remain constant or increase while alloy 909 continues to decline. The elongation value for alloy 783 declines to about 10% after 8000 hours of exposure but then increases thereafter. High temperature tensile properties of INCONEL alloys 783, 718 and INCOLOY alloy 909 tested at 1300°F (704°C) following isothermal exposure at 1300°F (704°C) are shown in Figure 5. Alloy 783 offers superior performance when compared to alloy 909 in these test conditions. Figure 4 - High temperature tensile properties of INCONEL alloys 783, 718 and INCOLOY alloy 909 tested at 1200°F (649°C) following isothermal exposure at 1100°F (593°C). **Figure 5-** High temperature tensile properties of INCONEL alloys 783, 718 and INCOLOY alloy 909 tested at 1300°F (704°C) following isothermal exposure at 1300°F (704°C). #### % Elongation at 649°C Following 593°C Exposure Figure 6- The 1200°F (649°C) elongation of materials following isothermal exposure at 1100°F (593°C). Open squares indicate data obtained from the repeat testing [3]. #### Shrinkage of Alloy 783 at 593°C Figure 7- Shrinkage of alloy 783 on isothermal exposure at 593°C. This change in dimensions was in-situ monitored at 593°C with a dilatometer [3]. 100000 1000000 10000000 # **Elevated Temperature Fatigue** Tension-tension fatigue data for INCONEL alloy 783 aged for 1000 hours at 1100°F (593°C) and then tested at 800°F (427°C) and 1200°F (649°C) are shown in Figure 8. Figure 8- Tension-tension fatigue data for INCONEL alloy 783 exposed for 1000 hours at 1100°F (593°C) and then tested at 800°F (427°C) and 1200°F (649°C). R=0.1, Frequency=10 hertz # Oxidation and Salt Spray Resistance To achieve low CTE, alloys based on Ni-Fe-Co compositions require the chromium content be maintained at low levels. Added Cr lowers the Curie temperature and thereby increases thermal expansion rate over a wider temperature range. The necessary lack of Cr reduces resistance to both general oxidation and stress accelerated grain boundary oxygen enhanced cracking (SAGBO). Increased amounts of Al in alloys strengthened by γ alone promotes SAGBO. Alloy 783 is the culmination in the development of an alloy system with very high aluminum content that, in addition to forming γ , causes β aluminide phase precipitation in the austenitic matrix. It was discovered that this type of structure could be processed to resist both SAGBO and general oxidation, while providing low thermal expansion and useful mechanical properties up to 700°C. Figure 9 provides a comparison of the cyclic oxidation resistance of INCONEL alloys 783, 718, and INCOLOY alloy 909 at 704°C (1300°F). The oxidation rate of alloy 783 is slightly greater than alloy 718 at 704°C, but is still excellent compared to alloy 909. In Figures 10 and 11, test samples were prepared from wrought alloys 783, 909, 718 and a martensitic M152 alloy for salt spray testing. A series of specimens were fully heat-treated per specification and tested in the as-machined, bare metal condition. Two cylindrical alloy 783 samples (783C & 783D) were fully machined then annealed and aged resulting in a thin oxide scale. A third series was processed to evaluate a chromide-coated condition. One set of samples was tested as per ASTM B117-97 and the other set was tested as per ASTM B117-97 with intermittent exposure of twice a week at 649°C for 24 hours [1]. **Figure 9 -** Weight loss for INCONEL alloys 783, 718, and INCOLOY alloy 909 after 1300°F (704°C) cyclic oxidation tests (60 min. in/ 20 min. out). **Figure 10-** Measurements of metal affected by 1,009 hours of salt spray at 35°C in 5% NaCl. Testing was done as per ASTM B117-97. Trends indicate the resistance alloy 783 is far superior to other low CTE alloys and on par with alloy 718. Letters and numbers after the alloy show multiple samples. **Figure 11-** Extent of corrosive attack after 1,009 hours of salt spray exposure and 649°C thermal exposure. Samples were tested as per ASTM B117-97 and also after intermittent exposure to 649°C for 24 hours twice a week. ## **Fabrication** INCONEL alloy 783 has good fabricability and can be formed, machined, and welded by conventional procedures for nickel alloys. In most operations, its behavior is similar to that of INCONEL alloy 718. ## **Hot Forming** The temperature range for hot forming of INCONEL alloy 783 is 1700°F to 2050°F (927°C to 1121°C). Alloy 783 works similarly to INCONEL alloy 718, but is a bit "softer" at high temperatures, and begins to stiffen quickly as temperature drops below 1700°F (927°C). - 1. Initial Forging- ingots are heated to $2050^{\circ}F$ ($1121^{\circ}C$) and finished to 8-in diameter billet with 1900° $1950^{\circ}F$ (1038° - $1066^{\circ}C$). - 2. Intermediate Forging- heat billets to 1900°F (1038°C); final reheat from 1800°-1850°F (982°- 1010°C). 140 120 783 100 718 80 Strength, ksi 60 40 20 0 1400 1600 1800 2000 2200 2400 Temperature, °F Figure 12- Gleeble hot ductility of alloys 783 and 718. Figure 13- Gleeble fracture strength of alloys 783 and 718. Figure 14- Annealing temperature versus grain size of hot worked alloys 783 and 718. Figure 15- Work hardening characteristics of alloys 783 and 718. ### Machining INCONEL alloy 783 is machined by conventional practices for high-strength nickel alloys. Rough machining should be done with the material in the annealed condition. #### **Heat Treatment** INCONEL alloy 783 is heat treated as follows: Solution anneal at 2050°F (1121°C)/1 hr, air cool, plus "beta age" at 1550°F (845°C)/4 hr, air cool to room temperature, plus age harden at 1325°F (720°C)/8 hr, furnace cool at 100°F (55°C)/hr to 1150°F (620°C)/8 hr, and air cool. ### www.specialmetals.com ### References - 1. E.C. Ott, J.R. Groh, S.K. Mannan, "Environmental Behavior of Low Thermal Expansion INCONEL alloy 783", Superalloys 2004, Edited by K.A. Green et al, TMS, pp. 643-652. - 2. J.S. Smith and K.A. Heck, "Development of a Low Thermal Expansion, Crack Growth Resistance Superalloy", Superalloys 1996, Edited by R.D. Kissinger et al, TMS, 1996, pp. 91-100. - 3. S.K. Mannan, G.D. Smith, and S.J. Patel, "Thermal Stability of INCONEL alloy 783 at 593C and 704C", Superalloys 2004, Edited by K.A. Green et al, TMS, pp. 627-635. - 4. K. Heck, J.S. Smith, R. Smith, "INCONEL alloy 783: An Oxidation Resistance, Low Expansion Superalloy for Gas Turbine Application", Journal of Engineering for Gas Turbine and Power, April 1998, Vol. 120, pp. 1-7. - 5. L.Z. Ma, K.M. Chang, S.K. Mannan, "Oxide-Induced Crack Closure: An Explanation for Abnormal Time-Dependent Fatigue Crack Propagation Behavior in INCONEL alloy 783", Scripta Materialia, Vol.48, 2003, pp. 583-588. - 6. L.Z. Ma, K.M. Chang, S.K. Mannan, S.J. Patel, "Effect of NiAl-beta Precipitates on Fatigue Crack Propagation of INCONEL alloy 783 Under Time-Dependent Condition with Various Loads", Scripta Materialia, Vol. 48, 2003, pp. 551-557. - 7. L.Z. Ma, K.M. Chang, S.K. Mannan, S.J. Patel, "Effect of Isothermal Exposure on Elevated-Temperature, Time-Dependent Fatigue-Crack Propagation in INCONEL alloy 783", Metallurgical Transactions, Vol. 33A, 2002, pp.3465-3478. Publication Number SMC-064 Copyright © Special Metals Corporation, 2004 (Dec 04) INCONEL and INCOLOY are trademarks of the Special Metals Corporation group of companies. The data contained in this publication is for informational purposes only and may be revised at any time without prior notice. The data is believed to be accurate and reliable, but Special Metals makes no representation or warranty of any kind (express or implied) and assumes no liability with respect to the accuracy or completeness of the information contained herein. Although the data is believed to be representative of the product, the actual characteristics or performance of the product may vary from what is shown in this publication. Nothing contained in this publication should be construed as guaranteeing the product for a particular use or application. U.S.A. Special Metals Corporation 3200 Riverside Drive Huntington, WV 25705-1771 Phone +1 (304) 526-5100 +1 (800) 334-4626 +1 (304) 526 5643 Fax +1 (304) 526-5643 4317 Middle Settlement Road New Hartford, NY 13413-5392 Phone +1 (315) 798-2900 +1 (800) 334-8351 Fax +1 (315)798-2016 United Kingdom Special Metals Wiggin Ltd. Holmer Road Hereford HR4 9SL England Phone +44 (0) 1432 382200 Fax +44 (0) 1432 264030